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Restricted arc-connectivity is a more refined network reliability index than arc-connectivity.
In this paper, we first introduce the concept of minimum arc-degree and show for many
digraphs, the minimum arc-degree is an upper bound on the restricted arc-connectivity.
Next we call a strongly connected digraph a λ′-optimal digraph if its restricted arc-
connectivity is equal to its minimum arc-degree. Finally, we give some sufficient conditions
for a digraph to be λ′-optimal.
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1. Terminology and introduction

For graph-theoretical terminology and notation not de-
fined here we follow [4]. We only consider finite (di)graphs
without loops and multiple edges (arcs). Let G be a graph.
The degree d(v) of a vertex v in G is the number of ver-
tices adjacent to v and the edge degree ξ(e) of an edge
e = uv in G is d(u) + d(v) − 2. Let ξ = ξ(G) denote the
minimum edge degree in G . Let D = (V , A) be a digraph
with vertex set V (D) and arc set A(D). For a vertex v in D ,
its out-neighborhood is N+(v) = N+

D (v) = {u ∈ V (D): vu ∈
A(D)}, its out-degree is d+(v) = d+

D (v) = |N+(v)|. The
minimum out-degree of D is δ+(D) = min{d+(x): x ∈
V (D)}. The in-neighborhood N−(v), the in-degree d−(v)

of v and the minimum in-degree δ−(D) of D are de-
fined analogously. The minimum degree of D is δ(D) =
min{δ+(D), δ−(D)}. For a pair X, Y of nonempty ver-
tex sets of D , we define (X, Y ) = {xy ∈ A(D): x ∈ X,

y ∈ Y }. If Y = X = V (D) \ X , we write ∂+(X) or ∂−(Y )

instead of (X, Y ). Usually, abbreviate ∂+({x}) and ∂−({x})
to ∂+(x) and ∂−(x), respectively. Clearly, d+(x) = |∂+(x)|
and d−(x) = |∂−(x)|. If C g = u1u2 . . . ug u1 is a short-
est cycle of D , then let ξ(C g) = min{∑g

i=1 d+(ui) − g,
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∑g
i=1 d−(ui) − g}, and ξ(D) = min{ξ(C g): C g is a short-

est cycle of D}.
A processor interconnection network or a communica-

tions network is conveniently modeled by a graph D =
(V , E) or a digraph D = (V , A), in which the vertex set V
corresponds to processors or switching elements, and the
edge set E or the arc set A corresponds to communica-
tion links. One fundamental consideration in the design of
networks is reliability. When studying network reliability,
one often considers a network model [6] whose vertices
are perfectly reliable while edges or arcs may fail inde-
pendently with the same probability ρ ∈ (0,1). An edge
(arc)-cut of a (strongly) connected (di)graph D is a set
of edges (arcs) whose removal disconnects D . The edge
(arc)-connectivity λ = λ(D) is defined as the minimum car-
dinality over all edge (arc)-cuts of D . Let mi be the number
of edge (arc)-cuts of size i. Then the probability of D being
(strongly) connected is

R(D;ρ) = 1 −
ε∑

i=λ

miρ
i(1 − ρ)ε−i,

where ε is the number of edges (arcs) of D . The poly-
nomial R(D;ρ) is called the all-terminal reliability of D .
Clearly, the larger R(D;ρ) is, the more reliable the net-
work is. But in general, to determine R(D;ρ), i.e., to de-
termine every mi , is NP-hard [3,9]. When ρ is sufficiently
small, the maximum of R(D;ρ) can be obtained by max-
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imizing λ first and then minimizing mλ,mλ+1, . . . ,mε se-
quentially [12].

To maximize λ(D) and minimize mλ , Bauer et al. [5]
defined the super-λ (di)graphs. In order to estimate more
precisely the reliability of networks, Esfahanian and Hakimi
[6] introduced the concept of restricted edge-connectivity.
A set of edges S in a connected graph G is called a re-
stricted edge cut if G − S is disconnected and contains
no isolated vertex. If such an edge cut exists, then the
restricted edge connectivity of G , denoted by λ′ = λ′(G),
is defined to be the minimum number of edges over all
restricted edge cuts of G . A connected graph G is called
λ′-connected if λ′(G) exists. Esfahanian and Hakimi [6]
showed that each connected graph G of order n � 4 except
a star K1,n−1 is λ′-connected and satisfies λ(G) � λ′(G) �
ξ(G). A λ′-connected graph G is called a λ′-optimal graph
if λ′(G) = ξ(G).

Recently, as a generalization of restricted edge-connecti-
vity to digraphs, the concept of restricted arc-connectivity
was introduced by Volkmann [11]. Let D be a strongly
connected digraph. An arc subset S of D is a restricted
arc-cut of D if D − S has a non-trivial strong component
D1, that means a strong component with order at least
2, such that D − V (D1) contains an arc. The restricted
arc-connectivity λ′(D) is the minimum cardinality over
all restricted arc-cuts of D . A strongly connected digraph
D is called λ′-connected, if λ′(D) exists. In the same pa-
per, Volkmann proved that each strong digraph D of order
n � 4 and girth g = 2 or g = 3 except some families of di-
graphs is λ′-connected and satisfies λ(D) � λ′(D) � ξ(D).

Investigations on the restricted edge-connectivity of
graphs were made by many authors, for example, by
[1,2,7,8,10,13]. However, closely related results on restricted
arc-connectivity have received little attention. In this pa-
per, we introduce the concept of λ′-optimal digraphs,
and show some sufficient conditions for a digraph to be
λ′-optimal.

2. The minimum arc-degree of a digraph

A digraph D is called acyclic if it has no cycle. Acyclic
digraphs form a well studied family of digraphs due to the
following important property.

Proposition 2.1. (See [4].) Every acyclic digraph has a vertex of
in-degree zero as well as a vertex of out-degree zero.

The strong components of a digraph D can be labeled
D1, . . . , Dt such that there is no arc from D j to Di unless
j < i [4]. We call such an ordering an acyclic ordering of
the strong components of D .

Let D be a digraph. If xy is an arc with yx /∈ A(D),
then call ξ ′(xy) = min{d+(x) + d+(y) − 1,d−(x) + d−(y) −
1,d+(y) + d−(x),d+(x) + d−(y) − 1} the arc-degree of
xy. If xy is an arc with yx ∈ A(D), then call ξ ′(xy) =
min{d+(x)+ d+(y)− 2,d−(x)+ d−(y)− 2,d+(y)+ d−(x)−
1,d+(x) + d−(y) − 1} the arc-degree of xy. The minimum
arc-degree of D is ξ ′(D) = min{ξ ′(xy): xy ∈ A(D)}.

We shall show that for many digraphs, the mini-
mum arc-degree is an upper bound on the restricted arc-
connectivity. This requires the following lemma.
Lemma 2.1. Let D be a strongly connected digraph with
δ+(D) � 3 or δ−(D) � 3 and let xy be an arc of D. Then
∂+({x, y}), ∂−({x, y}), ∂−(x) ∪ ∂+(y), and ∂+(x) ∪ ∂−(y) are
restricted arc-cuts of D.

Proof. Let S be one of ∂+({x, y}), ∂−({x, y}), ∂−(x) ∪
∂+(y), and ∂+(x) ∪ ∂−(y) and let D ′ = D − S . Clearly, ei-
ther x and y are two strong components of D ′ or D[{x, y}]
is a 2-cycle and so is a strong component of D ′ . Suppose
that D ′′ = D − {x, y} is an acyclic digraph. Then, by Propo-
sition 2.1, there exist u, v ∈ V (D ′′) such that d−

D ′′ (u) = 0
and d+

D ′′(v) = 0. This implies that d−
D (u) � 2 and d+

D (v) � 2,
contradicting the assumption that δ+(D) � 3 or δ−(D) �
3. Therefore, D ′′ contains a non-trivial strong component
D1. Clearly, D1 is also a strong component of D ′ and
D − V (D1) contains the arc xy. By definition, S is a re-
stricted arc-cut of D . The proof is complete. �
Theorem 2.1. Let D be a strongly connected digraph with
δ+(D) � 3 or δ−(D) � 3. Then D is λ′-connected and satisfies
λ′(D) � ξ ′(D).

Proof. By Lemma 2.1, for an arbitrary arc xy in D ,
∂+({x, y}), ∂−({x, y}), ∂−(x)∪∂+(y), and ∂+(x)∪∂−(y) are
restricted arc-cuts, which implies that D is λ′-connected
and λ′(D) � min{|∂+({x, y})|, |∂−({x, y})|, |∂−(x)∪ ∂+(y)|,
|∂+(x) ∪ ∂−(y)|}. If yx /∈ A(D), then |∂+({x, y})| = d+(x) +
d+(y) − 1, |∂−({x, y})| = d−(x) + d−(y) − 1, |∂−(x) ∪
∂+(y)| = d−(x) + d+(y), and |∂+(x) ∪ ∂−(y)| = d+(x) +
d−(y) − 1. If yx ∈ A(D), then |∂+({x, y})| = d+(x) +
d+(y) − 2, |∂−({x, y})| = d−(x) + d−(y) − 2, |∂−(x) ∪
∂+(y)| = d−(x)+ d+(y)− 1, and |∂+(x)∪ ∂−(y)| = d+(x)+
d−(y) − 1. Therefore, λ′(D) � ξ ′(xy). Combining this with
the arbitrariness of xy, it follows that λ′(D) � ξ ′(D). �

By definition, ξ ′(D) � ξ(D) for many digraphs D , for
example, for all the digraphs D with δ(D) � 3. In this
sense, ξ ′(D) is a better upper bound on λ′(D) than ξ(D).
Similar to the definition of λ′-optimal graphs, a λ′-con-
nected digraph D is called λ′-optimal if λ′(D) = ξ ′(D).

3. Sufficient conditions for λ′-optimal digraphs

It is well known that each minimum arc-cut has the
form ∂+(X), where X is a subset of V (D). The example
given below shows that there exist some digraphs without
minimum restricted arc-cut of the form ∂+(X).

Example 3.1. Let H be a complete digraph with V (H) =
{x1, x2, . . . , xp}, where p � 4. The digraph D ′ is defined
as the disjoint union of H and 2 additional vertices u, v
such that for each i = 1,2, . . . , p, xi dominates v and is
dominated by u. Let D = (V (D ′), A(D ′) ∪ {uv, vx1, x1u}).
Clearly, {vx1, x1u} is a restricted arc-cut of D . Let S be a
subset of A(D) with |S| � 2. If S �= {vx1, x1u}, then either
D − S is strong or D − S has a strong component with or-
der |V (D)| − 1, which implies that S is not a restricted
arc-cut of D . Therefore, {vx1, x1u} is the unique minimum
restricted arc-cut of D , which cannot be written as ∂+(X)

for any X ⊆ V (D).
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Theorem 3.1. Let D be a λ′-connected digraph with λ′(D) �
ξ ′(D). If D has no minimum restricted arc-cut of the form
∂+(X), where X is a subset of V (D), then D is λ′-optimal.

Proof. Let S be a minimum restricted arc-cut of D and let
D1, D2, . . . , Dt be an acyclic ordering of the strong com-
ponents of D ′ = D − S . Since S is a restricted arc-cut,
there exists a non-trivial strong component D j of D ′ . If

D[⋃ j−1
i=1 V (Di)] contains an arc, then let X = ⋃t

i= j V (Di).

Noting that there is no arc from
⋃t

i= j V (Di) to
⋃ j−1

i=1 V (Di)

in D ′ , we have ∂+(X) ⊆ S . Clearly, ∂+(X) is also a re-
stricted arc-cut. It follows that S = ∂+(X), a contradiction.
Similarly, if D[⋃t

i= j+1 V (Di)] contains an arc, then let X =
⋃t

i= j+1 V (Di), we have S = ∂+(X), a contradiction again.

Therefore, both D[⋃ j−1
i=1 V (Di)] and D[⋃t

i= j+1 V (Di)] are
empty, which implies that D j is the unique non-trivial
strong component of D ′ . Combining this with the fact
that S is a restricted arc-cut, D − V (D j) contains an

arc with one end, say u, in
⋃ j−1

i=1 V (Di) and the other,
say v , in

⋃t
i= j+1 V (Di). Then ∂+(v) ∪ ∂−(u) ⊆ S . It is

easy to see that ∂+(v) ∪ ∂−(u) is a restricted arc-cut
and so S = ∂+(v) ∪ ∂−(u). It follows that λ′(D) = |S| =
|∂+(v) ∪ ∂−(u)| � ξ ′(D). Combining this with the assump-
tion λ′(D) � ξ ′(D), we have λ′(D) = ξ ′(D). Therefore, D is
λ′-optimal. The proof is complete. �

A simple, but very useful sufficient condition for a di-
graph to be λ′-optimal is given as follows.

Corollary 3.1. Let D be a strongly connected digraph with
δ+(D) � 3 or δ−(D) � 3 and let S = ∂+(X) be a minimum re-
stricted arc-cut of D. If there exists an arc x′x′′ in D[X] such
that |N+(x) ∩ X| � 2 for any x ∈ X \ {x′, x′′} or there ex-
ists an arc y′ y′′ in D[X] such that |N−(y) ∩ X | � 2 for any
y ∈ X \ {y′, y′′}, then D is λ′-optimal.

Proof. By reason of symmetry we only prove the case
that there exists an arc x′x′′ in D[X] such that for any
x ∈ X \ {x′, x′′}, |N+(x) ∩ X | � 2. The hypotheses im-
ply that ξ ′(D) � |∂+({x′, x′′})| = |({x′, x′′}, X \ {x′, x′′})| +
|({x′, x′′}, X)| � 2|X \ {x′, x′′}| + |({x′, x′′}, X)| �

∑
x∈X\{x′,x′′}

|N+(x) ∩ X | + |({x′, x′′}, X)| = |(X \ {x′, x′′}, X)| + |({x′, x′′},
X)| = |(X, X)| = |S| = λ′(D). By Theorem 2.1, we have
λ′(D) � ξ ′(D). Therefore, λ′(D) = ξ ′(D), which implies that
D is λ′-optimal. �
Theorem 3.2. Let D be a digraph with order n � 4. If |N+(u) ∩
N−(v)| � 3 for all pairs of vertices u, v with uv /∈ A(D), then
D is λ′-optimal.

Proof. Clearly, D is a strong digraph with δ(D) � 3. By
Theorem 2.1, D is λ′-connected and satisfies λ′(D) � ξ ′(D).
Suppose, on the contrary, that D is not λ′-optimal, that
is, λ′(D) < ξ ′(D). Then, by Theorem 3.1, we can assume
that there exists X ⊆ V (D) such that S = ∂+(X) is a min-
imum restricted arc-cut. Let Xi = {x ∈ X: |N+(x) ∩ X | = i},
Xi = {y ∈ X: |N−(y)∩ X | = i}, i = 0,1, and let X2 = {x ∈ X:
|N+(x) ∩ X | � 2}, X2 = {y ∈ X: |N−(y) ∩ X | � 2}.
Claim 1. Either X0 = ∅ or X0 = ∅.

Assume by way of contradiction that there exist x ∈ X0
and y ∈ X0. Clearly, xy /∈ A(D) and so |N+(x) ∩ N−(y)| �
3. On the other hand, since x ∈ X0 and y ∈ X0, we have
N+(x) ⊆ X and N−(y) ⊆ X , which implies that N+(x) ∩
N−(y) = ∅, a contradiction. Claim 1 follows.

Without loss of generality, assume X0 = ∅ and let
D1, D2, . . . , Dt be an acyclic ordering of the strong com-
ponents of D ′ = D[X].

Claim 2. |X | � 3.

Suppose that D[X] contains no arcs. Then by the def-
inition of restricted arc-cuts, we have t � 2. For any y1 ∈
V (D1), yt ∈ V (Dt), we have yt y1 /∈ A(D) and so |N+(yt)∩
N−(y1)| � 3. On the other hand, since y1 ∈ V (D1) and
yt ∈ V (Dt), we have N−(y1) ⊆ V (D1) ∪ X and N+(yt) ⊆
V (Dt)∪ X and so N−(y1)∩ N+(yt) ⊆ X . Therefore, |X | � 3.
Suppose that D[X] contains an arc x1x2. Then |X | � 2. If
|X | = 2, then X = {x1, x2} and so λ′(D) = |S| � ξ ′(x1x2) �
ξ ′(D), contrary to the assumption. Therefore, |X | � 3 again.
The proof of Claim 2 is complete.

Claim 3. D[X] contains at least one arc.

Assume by way of contradiction that D[X] contains no
arc. Then, by the definition of restricted arc-cuts, we have
t � 2. Suppose that D1 is trivial and let V (D1) = {y1}.
Since D is strong, there exists x ∈ X such that xy1 ∈ A(D).
Noting that ∂+(x)∪∂−(y1) ⊆ S , we have that λ′(D) = |S| �
ξ ′(xy1) � ξ ′(D), contrary to the assumption. Suppose that
Dt is trivial and let V (Dt) = {yt}. Since D is strong, there
exists x ∈ X such that yt x ∈ A(D). Let S∗ = ∂+({yt , x}).
By Lemma 2.1, S∗ is a restricted arc-cut of D . For any
x′, x′′ ∈ X , by assumption, we have |N+(x′) ∩ N−(x′′)| � 3,
and so |N+(x′)| � 3. It follows that |S∗| � d+(x)+|X |−1 <

d+(x) + 3(|X | − 1) � |S|, which is contrary to the minimal-
ity of S . Therefore, both D1 and Dt are not trivial. This
implies that S ′ = (V \ (V (D1)), V (D1)) = (X, V (D1)) is a
restricted arc-cut of D . Noting that S ′ ⊆ S , it follows that
S ′ = S from the minimality of S . Let yt ∈ V (Dt). Then
for any y ∈ V (D1), we have yt y /∈ A(D). By assumption,
|N+(yt) ∩ N−(y)| � 3. Combining this with the fact that
N+(yt) ∩ N−(y) ⊆ X , we have |N−(y) ∩ X | � 3 and so
|N−(y) ∩ (V \ (V (D1))| � 3. Since D1 is non-trivial, there
exists an arc y1 y′

1 in D1. By Corollary 3.1, D is λ′-optimal,
a contradiction completing the proof of Claim 3.

If X = X2, then, by Claim 3 and Corollary 3.1, D is λ′-
optimal, a contradiction. So we have

Claim 4. X1 �= ∅.

Let x1 ∈ X1 and let N+(x1) ∩ X = {y1}.

Claim 5. X \ {y1} ⊆ X2 .
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By the definition of x1, for any y ∈ X \ {y1}, x1 y /∈ A(D).
By assumption, 3 � |N+(x1) ∩ N−(y)| = |N+(x1) ∩ N−(y) ∩
X | + |N+(x1) ∩ N−(y) ∩ X | � |N−(y) ∩ X | + |N+(x1) ∩ X | =
|N−(y) ∩ X | + 1, which implies that |N−(y) ∩ X | � 2.

Claim 6. X0 = ∅.

Since x1 ∈ N−(y1) ∩ X , we have y1 /∈ X0. By Claim 5,
we have y ∈ X2 for any y ∈ X \ {y1}. Therefore, X0 = ∅.

Similarly, we have that |X| � 3, D[X] contains at least
one arc, and

Claim 7. X1 �= ∅.

By Claims 5 and 7, we have

Claim 8. X1 = {y1}.

Let x ∈ X \ {x1}. Then xy1 /∈ A(D). By assumption,
3 � |N+(x) ∩ N−(y1)| = |N+(x) ∩ N−(y1) ∩ X | + |N+(x) ∩
N−(y1)∩ X| � |N−(y1)∩ X |+|N−(y1)∩ X | = 1+|N−(y1)∩
X|, which implies that |N−(y1) ∩ X | � 2. Therefore, there
exists y ∈ X such that yy1 ∈ A(D). By Corollary 3.1 and
Claim 5, D is λ′-optimal, a contradiction. The proof of The-
orem 3.2 is complete. �
Corollary 3.2. (See [7].) Let G be a λ′-connected graph. If
|N(u) ∩ N(v)| � 3 for all pairs u, v of nonadjacent vertices,
then G is λ′-optimal.

Proof. Let D = D(G) be the digraph obtained from G by
replacing each edge of G by a pair of two mutually op-
posite oriented arcs. Then |N+

D (u) ∩ N−
D (v)| � 3 for all
pairs of vertices u, v with uv /∈ A(D). By Theorem 3.2,
λ′(D) = ξ ′(D). Clearly, ξ(G) = ξ ′(D). It was pointed out in
the proof of Corollary 2.2 of [11] that λ′(G) = λ′(D). It fol-
lows that λ′(G) = ξ(G). The proof is complete. �
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