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1. Terminology and introduction

For graph-theoretical terminology and notation not de-
fined here we follow [4]. We only consider finite (di)graphs
without loops and multiple edges (arcs). Let G be a graph.
The degree d(v) of a vertex v in G is the number of ver-
tices adjacent to v and the edge degree £(e) of an edge
e=uv in G is d(u) +d(v) — 2. Let £ = &£(G) denote the
minimum edge degree in G. Let D = (V, A) be a digraph
with vertex set V(D) and arc set A(D). For a vertex v in D,
its out-neighborhood is N*(v) = Ng(v) ={ueV(D): vue
A(D)}, its out-degree is d¥(v) = d}(v) = [INt(v)|. The
minimum out-degree of D is §t(D) = min{dT(x): x €
V(D)}. The in-neighborhood N~ (v), the in-degree d~(v)
of v and the minimum in-degree 8~ (D) of D are de-
fined analogously. The minimum degree of D is §(D) =
min{§*(D),8(D)}. For a pair X,Y of nonempty ver-
tex sets of D, we define (X,Y) = {xy € A(D): x € X,
yeYLIfY=X=V(D)\X, we write 3(X) or 37 (Y)
instead of (X, Y). Usually, abbreviate 97 ({x}) and 3~ ({x})
to a7 (x) and 9~ (x), respectively. Clearly, d*(x) = |97 (x)]|
and d=(x) = |07 (x)|. If Cg = uqup...uguy is a short-
est cycle of D, then let £(Cg) = min{}%_ d*(u;) — g,
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Z;.g:] d™(u;) — g}, and £(D) = min{§(Cg): Cg is a short-
est cycle of D}.

A processor interconnection network or a communica-
tions network is conveniently modeled by a graph D =
(V,E) or a digraph D = (V, A), in which the vertex set V
corresponds to processors or switching elements, and the
edge set E or the arc set A corresponds to communica-
tion links. One fundamental consideration in the design of
networks is reliability. When studying network reliability,
one often considers a network model [6] whose vertices
are perfectly reliable while edges or arcs may fail inde-
pendently with the same probability p € (0,1). An edge
(arc)-cut of a (strongly) connected (di)graph D is a set
of edges (arcs) whose removal disconnects D. The edge
(arc)-connectivity A = A(D) is defined as the minimum car-
dinality over all edge (arc)-cuts of D. Let m; be the number
of edge (arc)-cuts of size i. Then the probability of D being
(strongly) connected is

&
R(D:p) =17 mip'(1—p)*".
i=A

where ¢ is the number of edges (arcs) of D. The poly-
nomial R(D; p) is called the all-terminal reliability of D.
Clearly, the larger R(D; p) is, the more reliable the net-
work is. But in general, to determine R(D; p), i.e., to de-
termine every m;, is NP-hard [3,9]. When p is sufficiently
small, the maximum of R(D; p) can be obtained by max-
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imizing A first and then minimizing m;,m;41,...,me se-
quentially [12].

To maximize A(D) and minimize m,, Bauer et al. [5]
defined the super-A (di)graphs. In order to estimate more
precisely the reliability of networks, Esfahanian and Hakimi
[6] introduced the concept of restricted edge-connectivity.
A set of edges S in a connected graph G is called a re-
stricted edge cut if G — S is disconnected and contains
no isolated vertex. If such an edge cut exists, then the
restricted edge connectivity of G, denoted by A" = 1/(G),
is defined to be the minimum number of edges over all
restricted edge cuts of G. A connected graph G is called
A’-connected if A'(G) exists. Esfahanian and Hakimi [6]
showed that each connected graph G of order n > 4 except
a star Ky -1 is A’-connected and satisfies A(G) < 1/(G) <
£(G). A \'-connected graph G is called a A’-optimal graph
if M'(G) =£(G).

Recently, as a generalization of restricted edge-connecti-
vity to digraphs, the concept of restricted arc-connectivity
was introduced by Volkmann [11]. Let D be a strongly
connected digraph. An arc subset S of D is a restricted
arc-cut of D if D — S has a non-trivial strong component
D4, that means a strong component with order at least
2, such that D — V(D) contains an arc. The restricted
arc-connectivity A’(D) is the minimum cardinality over
all restricted arc-cuts of D. A strongly connected digraph
D is called A'-connected, if A’(D) exists. In the same pa-
per, Volkmann proved that each strong digraph D of order
n >4 and girth g =2 or g =3 except some families of di-
graphs is A’-connected and satisfies A(D) < A'(D) < (D).

Investigations on the restricted edge-connectivity of
graphs were made by many authors, for example, by
[1,2,7,8,10,13]. However, closely related results on restricted
arc-connectivity have received little attention. In this pa-
per, we introduce the concept of A’-optimal digraphs,
and show some sufficient conditions for a digraph to be
A’-optimal.

2. The minimum arc-degree of a digraph

A digraph D is called acyclic if it has no cycle. Acyclic
digraphs form a well studied family of digraphs due to the
following important property.

Proposition 2.1. (See [4].) Every acyclic digraph has a vertex of
in-degree zero as well as a vertex of out-degree zero.

The strong components of a digraph D can be labeled
D1, ..., D¢ such that there is no arc from D; to D; unless
j <i [4]. We call such an ordering an acyclic ordering of
the strong components of D.

Let D be a digraph. If xy is an arc with yx ¢ A(D),
then call £'(xy) = min{d*(x) +dT(y) = 1,d=(x) +d~(y) —
1,d7(y) + d=(x),d"(x) + d~(y) — 1} the arc-degree of
xy. If xy is an arc with yx € A(D), then call &'(xy) =
min{d* (%) +d*t(y) —2,d" () +d~(y) = 2,dT(y) +d~(x) —
1,dT(x) +d~(y) — 1} the arc-degree of xy. The minimum
arc-degree of D is £’(D) = min{&’(xy): xy € A(D)}.

We shall show that for many digraphs, the mini-
mum arc-degree is an upper bound on the restricted arc-
connectivity. This requires the following lemma.

Lemma 2.1. Let D be a strongly connected digraph with
8t(D) >3 or §~(D) > 3 and let xy be an arc of D. Then
AT (%, ¥, 07 ({x, ¥y}, 8- () UdT(y), and T (x) Ud~(y) are
restricted arc-cuts of D.

Proof. Let S be one of 3T({x,y}), 9~ ({x,y}), 9~ (x) U
9T (y), and 3T (x) U9~ (y) and let D’ =D — S. Clearly, ei-
ther x and y are two strong components of D’ or D[{x, y}]
is a 2-cycle and so is a strong component of D’. Suppose
that D” = D — {x, y} is an acyclic digraph. Then, by Propo-
sition 2.1, there exist u,v € V(D") such that dj,(u) =0
and d}, (v) = 0. This implies that dj, (u) < 2 and d}(v) <2,
contradicting the assumption that §+(D) >3 or §~ (D) >
3. Therefore, D” contains a non-trivial strong component
D1. Clearly, D; is also a strong component of D’ and
D — V(D7) contains the arc xy. By definition, S is a re-
stricted arc-cut of D. The proof is complete. 0O

Theorem 2.1. Let D be a strongly connected digraph with
8t(D) >3 or 6~ (D) > 3. Then D is A’'-connected and satisfies
A (D) < £'(D).

Proof. By Lemma 2.1, for an arbitrary arc xy in D,
3 ({x, y), 97 ({x, ¥, 87 (0 UT(y), and 3T () UI ™ (y) are
restricted arc-cuts, which implies that D is A’-connected
and 2/(D) <min{|a*({x, yDI, [8~ ({x, yDI, [0~ ) UdT(y)l,
18T (x) Ud~ ()|} If yx ¢ A(D), then [T ({x, yH| =d*(x) +
dt(y) =1, 19-({x.yPl=d ® +d () -1, 8- U
3Tl =d (0 +d*(y), and 3T () U~ (y)| =d"(x) +
d=(y) — 1. If yx € A(D), then |a7({x,y})| =d (x) +
d*(y) =2, 10-(x,yPl=d X +d () -2, 8- U
AT =d~ (0 +dT(y)—1,and 0T X)) U~ ()| =dt () +
d=(y) — 1. Therefore, A’(D) < &’(xy). Combining this with
the arbitrariness of xy, it follows that A'(D) < &'(D). O

By definition, £’(D) < &(D) for many digraphs D, for
example, for all the digraphs D with §(D) > 3. In this
sense, £'(D) is a better upper bound on A’(D) than &(D).
Similar to the definition of A’-optimal graphs, a A’-con-
nected digraph D is called A'-optimal if A'(D) = &'(D).

3. Sufficient conditions for A’-optimal digraphs

It is well known that each minimum arc-cut has the
form 8%(X), where X is a subset of V(D). The example
given below shows that there exist some digraphs without
minimum restricted arc-cut of the form 37 (X).

Example 3.1. Let H be a complete digraph with V(H) =
{x1,%2,...,xp}, where p > 4. The digraph D’ is defined
as the disjoint union of H and 2 additional vertices u, v
such that for each i =1,2,...,p, x; dominates v and is
dominated by u. Let D = (V(D’), A(D") U {uv, vxy, x1u}).
Clearly, {vx1,xju} is a restricted arc-cut of D. Let S be a
subset of A(D) with |S| < 2. If S # {vx1,x1u}, then either
D — S is strong or D — S has a strong component with or-
der |V(D)| — 1, which implies that S is not a restricted
arc-cut of D. Therefore, {vx1, xju} is the unique minimum
restricted arc-cut of D, which cannot be written as 97 (X)
for any X C V(D).
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Theorem 3.1. Let D be a A'-connected digraph with A'(D) <
&'(D). If D has no minimum restricted arc-cut of the form
3T (X), where X is a subset of V (D), then D is A'-optimal.

Proof. Let S be a minimum restricted arc-cut of D and let
D1, D3, ..., D¢ be an acyclic ordering of the strong com-
ponents of D’ =D — S. Since S is a restricted arc-cut,
there exists a non-trivial strong component D; of D’. If

D[U{;1 V(Dj)] contains an arc, then let X = Uf:j V(Dj).
Noting that there is no arc from ngj V(D) to U{z_]l V(D)
in D', we have 3" (X) C S. Clearly, 37 (X) is also a re-
stricted arc-cut. It follows that S = 37 (X), a contradiction.
Similarly, if D[UIF:]»Jrl V(D;)] contains an arc, then let X =
Uf:jﬂ V(D;), we have S =937 (X), a contradiction again.

Therefore, both D[Ul]:_]1 V(D;)] and D[ f:H_] V(D;)] are
empty, which implies that D; is the unique non-trivial
strong component of D’. Combining this with the fact

that S is a restricted arc-cut, D — V(D;) contains an
arc with one end, say u, in Uf;] V(D;) and the other,
say v, in UL;H V(D;). Then 9T (v) Ud—(u) C S. It is
easy to see that 3% (v) U3~ (u) is a restricted arc-cut
and so S =97 (v) Ud(u). It follows that A'(D) = |S| =
[T (v) U3~ (u)| = &'(D). Combining this with the assump-
tion A'(D) < &’(D), we have A'(D) = &'(D). Therefore, D is
A’-optimal. The proof is complete. O

A simple, but very useful sufficient condition for a di-
graph to be A’-optimal is given as follows.

Corollary 3.1. Let D be a strongly connected digraph with
8T(D)>30r8 (D) >3andlet S =31 (X) be aminimum re-
stricted arc-cut of D. If there exists an arc x'x” in D[X] such
that INT(x) N X| > 2 for any x € X \ {x¥, X"} or there ex-
ists an arc y'y” in D[X] such that [N~ (y) N X| > 2 for any
yeX\{y',y"}, then D is A" -optimal.

Proof. By reason of symmetry we only prove the case
that there exists an arc x'x” in D[X] such that for any
x e X\ {¥,x"}, INt(x) N X| > 2. The hypotheses im-
ply that &'(D) < [ ({x, x"D)| = (X, X"}, X \ {X,x"D| +
[ x7) X1 < 21X\ (X7 13X X7 X01 < D ovex ey
INTO) N X+ (X, %7}, X)) = [(X\ (X, X7} X))+ (X, X7},
X)| = |(X,X)| = |S| = M(D). By Theorem 2.1, we have
A (D) < &£(D). Therefore, A’ (D) = £/(D), which implies that
D is A’-optimal. O

Theorem 3.2. Let D be a digraph with ordern > 4. If IN* (u) N
N~ (v)| > 3 for all pairs of vertices u, v with uv ¢ A(D), then
D is A/ -optimal.

Proof. Clearly, D is a strong digraph with §(D) > 3. By
Theorem 2.1, D is A'-connected and satisfies A’ (D) < £/(D).
Suppose, on the contrary, that D is not A’-optimal, that
is, A’(D) < &(D). Then, by Theorem 3.1, we can assume
that there exists X € V(D) such that S =91 (X) is a min-
imum restricted arc-cut. Let X; = {x € X: [NT(x) N X| =i},
Xi={yeX: IN"(y)NX|=i},i=0,1, and let X; = {x € X:
INFNX|>2), Xa={yeX: IN"(»)NX|>2}.

Claim 1. Either Xo = ¢ or Xo = 9.

Assume by way of contradiction that there exist x € Xg
and y € Xo. Clearly, xy ¢ A(D) and so [Nt (x) "N~ (y)| >
3. On the other hand, since x € Xg and y € Xo, we have
Nt(x) € X and N~ (y) € X, which implies that N*(x) N
N~ (y) =9, a contradiction. Claim 1 follows.

Without loss of generality, assume Xo = ¢ and let
D1, Dy, ..., D be an acyclic ordering of the strong com-
ponents of D' = D[X].

Claim 2. |X| > 3.

Suppose that D[X] contains no arcs. Then by the def-
inition of restricted arc-cuts, we have t > 2. For any yi €
V(D1),y¢ € V(Dy), we have y;y1 ¢ A(D) and so [Nt (y;)N
N~(y1)| = 3. On the other hand, since y; € V(D7) and
yt € V(Dy), we have N~(y1) € V(D7) UX and N*(y,) €
V(Dy)UX and so N~ (y1)NNT(y;) € X. Therefore, |X| > 3.
Suppose that D[X] contains an arc x1xp. Then |X| > 2. If
|X| =2, then X = {x1,x2} and so A'(D) = |S| > &' (x1x2) >
&(D), contrary to the assumption. Therefore, | X| > 3 again.
The proof of Claim 2 is complete.

Claim 3. D[X] contains at least one arc.

Assume by way of contradiction that D[X] contains no
arc. Then, by the definition of restricted arc-cuts, we have
t > 2. Suppose that Dq is trivial and let V(Dq) = {y1}.
Since D is strong, there exists x € X such that xy; € A(D).
Noting that 37 (x)Ud~(y1) € S, we have that A'(D) =S| >
&'(xy1) > &/(D), contrary to the assumption. Suppose that
D; is trivial and let V (D¢) = {y;}. Since D is strong, there
exists x € X such that y;x € A(D). Let S* = 3+ ({ye, x}).
By Lemma 2.1, S* is a restricted arc-cut of D. For any
x',x" € X, by assumption, we have [INt(X) NN~ (x")| >3,
and so [Nt (x)| > 3. It follows that |S*| <dT(x)+|X|—1<
dt(x) +3(|X| — 1) <|S|, which is contrary to the minimal-
ity of S. Therefore, both D; and D; are not trivial. This
implies that S’ = (V \ (V(D1)), V(D1)) = (X, V(Dy)) is a
restricted arc-cut of D. Noting that S’ C S, it follows that
§’ = S from the minimality of S. Let y; € V(D). Then
for any y € V(D1), we have y:y ¢ A(D). By assumption,
INT(yt) N N~ (y)| > 3. Combining this with the fact that
Nt (yp) NN~ (y) € X, we have [N“(y) N X| >3 and so
IN“(y) N (V\ (V(D1))| = 3. Since Dq is non-trivial, there
exists an arc y1y] in D1. By Corollary 3.1, D is A’-optimal,
a contradiction completing the proof of Claim 3.

If X = X5, then, by Claim 3 and Corollary 3.1, D is A’-
optimal, a contradiction. So we have

Claim4. X1 # 0.
Let x; € X1 and let N*(x)) N X = {y1}.

Claim 5. X \ {y1} € X>.
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By the definition of xq, for any y € X\ {y1}, x1y ¢ A(D).
By assumption, 3 < [Nt (X)) NN~ (y)|=|NT(x1)"NN=(y) N
XI+INFEDNN- (M NXI < IN-() N X[+ [Nt x) N X| =
IN~(y) N X| 4+ 1, which implies that [N~ (y) N X| > 2.

Claim 6. X = 0.

Since x; € N™(y1) N X, we have y; ¢ Xo. By Claim 5,
we have y € X, for any y € X \ {y1}. Therefore, Xo = #.

Similarly, we have that |X| > 3, D[X] contains at least
one arc, and

Claim 7. X # 0.
By Claims 5 and 7, we have
Claim 8. X; = {y1}.

Let x € X \ {x1}. Then xy; ¢ A(D). By assumption,
3KINF@ NN (YDl =INT@) NN (y) N X[+ INFX) N
N7(yO)NXISINTONX[+INT(y)NX[=1+|N"(yDN
X|, which implies that [N~ (y1) N X| > 2. Therefore, there
exists y € X such that yy; € A(D). By Corollary 3.1 and
Claim 5, D is A’-optimal, a contradiction. The proof of The-
orem 3.2 is complete. O

Corollary 3.2. (See [7].) Let G be a A'-connected graph. If
IN(u) N N(v)| > 3 for all pairs u, v of nonadjacent vertices,
then G is A'-optimal.

Proof. Let D = D(G) be the digraph obtained from G by
replacing each edge of G by a pair of two mutually op-
posite oriented arcs. Then |NJDr(u) N N,(v)| > 3 for all

pairs of vertices u,v with uv ¢ A(D). By Theorem 3.2,
A (D) =&'(D). Clearly, £(G) = &/(D). It was pointed out in
the proof of Corollary 2.2 of [11] that A/(G) = A’(D). It fol-
lows that A’(G) = £(G). The proof is complete. O
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