Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

λ' -optimal digraphs $\stackrel{\text{tr}}{\sim}$

Shiying Wang*, Shangwei Lin

School of Mathematical Sciences, Shanxi University, Taiyuan 030006, People's Republic of China

ARTICLE INFO

Article history: Accepted 14 July 2008 Available online 18 July 2008 Communicated by M. Yamashita

Keywords: Fault tolerance Restricted edge-connectivity Restricted arc-connectivity

ABSTRACT

Restricted arc-connectivity is a more refined network reliability index than arc-connectivity. In this paper, we first introduce the concept of minimum arc-degree and show for many digraphs, the minimum arc-degree is an upper bound on the restricted arc-connectivity. Next we call a strongly connected digraph a λ' -optimal digraph if its restricted arc-connectivity is equal to its minimum arc-degree. Finally, we give some sufficient conditions for a digraph to be λ' -optimal.

© 2008 Elsevier B.V. All rights reserved.

1. Terminology and introduction

For graph-theoretical terminology and notation not defined here we follow [4]. We only consider finite (di)graphs without loops and multiple edges (arcs). Let *G* be a graph. The degree d(v) of a vertex v in G is the number of vertices adjacent to v and the edge degree $\xi(e)$ of an edge e = uv in G is d(u) + d(v) - 2. Let $\xi = \xi(G)$ denote the minimum edge degree in G. Let D = (V, A) be a digraph with vertex set V(D) and arc set A(D). For a vertex v in D, its out-neighborhood is $N^+(v) = N_D^+(v) = \{u \in V(D): vu \in V(D)\}$ A(D), its out-degree is $d^+(v) = d_D^+(v) = |N^+(v)|$. The minimum out-degree of *D* is $\delta^+(D) = \min\{d^+(x): x \in I\}$ V(D). The in-neighborhood $N^{-}(v)$, the in-degree $d^{-}(v)$ of v and the minimum in-degree $\delta^{-}(D)$ of D are defined analogously. The minimum degree of D is $\delta(D) =$ $\min\{\delta^+(D), \delta^-(D)\}$. For a pair X, Y of nonempty vertex sets of *D*, we define $(X, Y) = \{xy \in A(D): x \in X, x \in X\}$ $y \in Y$. If $Y = \overline{X} = V(D) \setminus X$, we write $\partial^+(X)$ or $\partial^-(Y)$ instead of (X, Y). Usually, abbreviate $\partial^+(\{x\})$ and $\partial^-(\{x\})$ to $\partial^+(x)$ and $\partial^-(x)$, respectively. Clearly, $d^+(x) = |\partial^+(x)|$ and $d^{-}(x) = |\partial^{-}(x)|$. If $C_g = u_1 u_2 \dots u_g u_1$ is a shortest cycle of D, then let $\xi(C_g) = \min\{\sum_{i=1}^g d^+(u_i) - g,$

* Corresponding author.

E-mail address: shiying@sxu.edu.cn (S. Wang).

 $\sum_{i=1}^{g} d^{-}(u_i) - g$, and $\xi(D) = \min\{\xi(C_g): C_g \text{ is a short-est cycle of } D\}$.

A processor interconnection network or a communications network is conveniently modeled by a graph D =(V, E) or a digraph D = (V, A), in which the vertex set V corresponds to processors or switching elements, and the edge set E or the arc set A corresponds to communication links. One fundamental consideration in the design of networks is reliability. When studying network reliability, one often considers a network model [6] whose vertices are perfectly reliable while edges or arcs may fail independently with the same probability $\rho \in (0, 1)$. An edge (arc)-cut of a (strongly) connected (di)graph D is a set of edges (arcs) whose removal disconnects D. The edge (arc)-connectivity $\lambda = \lambda(D)$ is defined as the minimum cardinality over all edge (arc)-cuts of D. Let m_i be the number of edge (arc)-cuts of size *i*. Then the probability of *D* being (strongly) connected is

$$R(D;\rho) = 1 - \sum_{i=\lambda}^{\varepsilon} m_i \rho^i (1-\rho)^{\varepsilon-i},$$

where ε is the number of edges (arcs) of *D*. The polynomial $R(D; \rho)$ is called the all-terminal reliability of *D*. Clearly, the larger $R(D; \rho)$ is, the more reliable the network is. But in general, to determine $R(D; \rho)$, i.e., to determine every m_i , is NP-hard [3,9]. When ρ is sufficiently small, the maximum of $R(D; \rho)$ can be obtained by max-

^{*} This work is supported by the National Natural Science Foundation of China (60773131).

^{0020-0190/\$ –} see front matter $\,\,\odot\,$ 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.ipl.2008.07.008

imizing λ first and then minimizing $m_{\lambda}, m_{\lambda+1}, \ldots, m_{\varepsilon}$ sequentially [12].

To maximize $\lambda(D)$ and minimize m_{λ} , Bauer et al. [5] defined the super- λ (di)graphs. In order to estimate more precisely the reliability of networks, Esfahanian and Hakimi [6] introduced the concept of restricted edge-connectivity. A set of edges *S* in a connected graph *G* is called a restricted edge cut if G - S is disconnected and contains no isolated vertex. If such an edge cut exists, then the restricted edge connectivity of *G*, denoted by $\lambda' = \lambda'(G)$, is defined to be the minimum number of edges over all restricted edge cuts of *G*. A connected graph *G* is called λ' -connected if $\lambda'(G)$ exists. Esfahanian and Hakimi [6] showed that each connected graph *G* of order $n \ge 4$ except a star $K_{1,n-1}$ is λ' -connected graph *G* is called a λ' -optimal graph if $\lambda'(G) = \xi(G)$.

Recently, as a generalization of restricted edge-connectivity to digraphs, the concept of restricted arc-connectivity was introduced by Volkmann [11]. Let *D* be a strongly connected digraph. An arc subset *S* of *D* is a restricted arc-cut of *D* if D - S has a non-trivial strong component D_1 , that means a strong component with order at least 2, such that $D - V(D_1)$ contains an arc. The restricted arc-connectivity $\lambda'(D)$ is the minimum cardinality over all restricted arc-cuts of *D*. A strongly connected digraph *D* is called λ' -connected, if $\lambda'(D)$ exists. In the same paper, Volkmann proved that each strong digraph *D* of order $n \ge 4$ and girth g = 2 or g = 3 except some families of digraphs is λ' -connected and satisfies $\lambda(D) \le \lambda'(D) \le \xi(D)$.

Investigations on the restricted edge-connectivity of graphs were made by many authors, for example, by [1,2,7,8,10,13]. However, closely related results on restricted arc-connectivity have received little attention. In this paper, we introduce the concept of λ' -optimal digraphs, and show some sufficient conditions for a digraph to be λ' -optimal.

2. The minimum arc-degree of a digraph

A digraph *D* is called acyclic if it has no cycle. Acyclic digraphs form a well studied family of digraphs due to the following important property.

Proposition 2.1. (See [4].) Every acyclic digraph has a vertex of in-degree zero as well as a vertex of out-degree zero.

The strong components of a digraph D can be labeled D_1, \ldots, D_t such that there is no arc from D_j to D_i unless j < i [4]. We call such an ordering an acyclic ordering of the strong components of D.

Let *D* be a digraph. If *xy* is an arc with $yx \notin A(D)$, then call $\xi'(xy) = \min\{d^+(x) + d^+(y) - 1, d^-(x) + d^-(y) - 1, d^+(y) + d^-(x), d^+(x) + d^-(y) - 1\}$ the arc-degree of *xy*. If *xy* is an arc with $yx \in A(D)$, then call $\xi'(xy) = \min\{d^+(x) + d^+(y) - 2, d^-(x) + d^-(y) - 2, d^+(y) + d^-(x) - 1, d^+(x) + d^-(y) - 1\}$ the arc-degree of *xy*. The minimum arc-degree of *D* is $\xi'(D) = \min\{\xi'(xy): xy \in A(D)\}$.

We shall show that for many digraphs, the minimum arc-degree is an upper bound on the restricted arcconnectivity. This requires the following lemma. **Lemma 2.1.** Let *D* be a strongly connected digraph with $\delta^+(D) \ge 3$ or $\delta^-(D) \ge 3$ and let *xy* be an arc of *D*. Then $\partial^+(\{x, y\}), \partial^-(\{x, y\}), \partial^-(x) \cup \partial^+(y), and \partial^+(x) \cup \partial^-(y)$ are restricted arc-cuts of *D*.

Proof. Let *S* be one of $\partial^+(\{x, y\})$, $\partial^-(\{x, y\})$, $\partial^-(x) \cup \partial^+(y)$, and $\partial^+(x) \cup \partial^-(y)$ and let D' = D - S. Clearly, either *x* and *y* are two strong components of *D'* or $D[\{x, y\}]$ is a 2-cycle and so is a strong component of *D'*. Suppose that $D'' = D - \{x, y\}$ is an acyclic digraph. Then, by Proposition 2.1, there exist $u, v \in V(D'')$ such that $d_{D''}^{-}(u) = 0$ and $d_{D''}^+(v) = 0$. This implies that $d_D^-(u) \leq 2$ and $d_D^+(v) \leq 2$, contradicting the assumption that $\delta^+(D) \geq 3$ or $\delta^-(D) \geq 3$. Therefore, *D''* contains a non-trivial strong component D_1 . Clearly, D_1 is also a strong component of *D'* and $D - V(D_1)$ contains the arc *xy*. By definition, *S* is a restricted arc-cut of *D*. The proof is complete. \Box

Theorem 2.1. Let *D* be a strongly connected digraph with $\delta^+(D) \ge 3$ or $\delta^-(D) \ge 3$. Then *D* is λ' -connected and satisfies $\lambda'(D) \le \xi'(D)$.

Proof. By Lemma 2.1, for an arbitrary arc *xy* in *D*, $\partial^+(\{x, y\})$, $\partial^-(\{x, y\})$, $\partial^-(x) \cup \partial^+(y)$, and $\partial^+(x) \cup \partial^-(y)$ are restricted arc-cuts, which implies that *D* is λ' -connected and $\lambda'(D) \leq \min\{|\partial^+(\{x, y\})|$, $|\partial^-(\{x, y\})|$, $|\partial^-(x) \cup \partial^+(y)|$, $|\partial^+(x) \cup \partial^-(y)|\}$. If $yx \notin A(D)$, then $|\partial^+(\{x, y\})| = d^+(x) +$ $d^+(y) - 1$, $|\partial^-(\{x, y\})| = d^-(x) + d^-(y) - 1$, $|\partial^-(x) \cup$ $\partial^+(y)| = d^-(x) + d^+(y)$, and $|\partial^+(x) \cup \partial^-(y)| = d^+(x) +$ $d^-(y) - 1$. If $yx \in A(D)$, then $|\partial^+(\{x, y\})| = d^+(x) +$ $d^+(y) - 2$, $|\partial^-(\{x, y\})| = d^-(x) + d^-(y) - 2$, $|\partial^-(x) \cup$ $\partial^+(y)| = d^-(x) + d^+(y) - 1$, and $|\partial^+(x) \cup \partial^-(y)| = d^+(x) +$ $d^-(y) - 1$. Therefore, $\lambda'(D) \leq \xi'(xy)$. Combining this with the arbitrariness of *xy*, it follows that $\lambda'(D) \leq \xi'(D)$. \Box

By definition, $\xi'(D) \leq \xi(D)$ for many digraphs *D*, for example, for all the digraphs *D* with $\delta(D) \geq 3$. In this sense, $\xi'(D)$ is a better upper bound on $\lambda'(D)$ than $\xi(D)$. Similar to the definition of λ' -optimal graphs, a λ' -connected digraph *D* is called λ' -optimal if $\lambda'(D) = \xi'(D)$.

3. Sufficient conditions for λ' -optimal digraphs

It is well known that each minimum arc-cut has the form $\partial^+(X)$, where X is a subset of V(D). The example given below shows that there exist some digraphs without minimum restricted arc-cut of the form $\partial^+(X)$.

Example 3.1. Let *H* be a complete digraph with $V(H) = \{x_1, x_2, ..., x_p\}$, where $p \ge 4$. The digraph *D'* is defined as the disjoint union of *H* and 2 additional vertices *u*, *v* such that for each i = 1, 2, ..., p, x_i dominates *v* and is dominated by *u*. Let $D = (V(D'), A(D') \cup \{uv, vx_1, x_1u\})$. Clearly, $\{vx_1, x_1u\}$ is a restricted arc-cut of *D*. Let *S* be a subset of A(D) with $|S| \le 2$. If $S \ne \{vx_1, x_1u\}$, then either D - S is strong or D - S has a strong component with order |V(D)| - 1, which implies that *S* is not a restricted arc-cut of *D*. Therefore, $\{vx_1, x_1u\}$ is the unique minimum restricted arc-cut of *D*, which cannot be written as $\partial^+(X)$ for any $X \subseteq V(D)$.

Theorem 3.1. Let *D* be a λ' -connected digraph with $\lambda'(D) \leq \xi'(D)$. If *D* has no minimum restricted arc-cut of the form $\partial^+(X)$, where *X* is a subset of *V*(*D*), then *D* is λ' -optimal.

Proof. Let *S* be a minimum restricted arc-cut of *D* and let D_1, D_2, \ldots, D_t be an acyclic ordering of the strong components of D' = D - S. Since S is a restricted arc-cut, there exists a non-trivial strong component D_i of D'. If $D[\bigcup_{i=1}^{j-1} V(D_i)]$ contains an arc, then let $X = \bigcup_{i=1}^{t} V(D_i)$. Noting that there is no arc from $\bigcup_{i=j}^{t} V(D_i)$ to $\bigcup_{i=1}^{j-1} V(D_i)$ in D', we have $\partial^+(X) \subseteq S$. Clearly, $\partial^+(X)$ is also a restricted arc-cut. It follows that $S = \partial^+(X)$, a contradiction. Similarly, if $D[\bigcup_{i=i+1}^{t} V(D_i)]$ contains an arc, then let X = $\bigcup_{i=j+1}^{t} V(D_i)$, we have $S = \partial^+(X)$, a contradiction again. Therefore, both $D[\bigcup_{i=1}^{j-1} V(D_i)]$ and $D[\bigcup_{i=j+1}^{t} V(D_i)]$ are empty, which implies that D_j is the unique non-trivial strong component of D'. Combining this with the fact that S is a restricted arc-cut, $D - V(D_j)$ contains an arc with one end, say u, in $\bigcup_{i=1}^{j-1} V(D_i)$ and the other, say v, in $\bigcup_{i=j+1}^{t} V(D_i)$. Then $\partial^+(v) \cup \partial^-(u) \subseteq S$. It is easy to see that $\partial^+(v) \cup \partial^-(u)$ is a restricted arc-cut and so $S = \partial^+(v) \cup \partial^-(u)$. It follows that $\lambda'(D) = |S| =$ $|\partial^+(v) \cup \partial^-(u)| \ge \xi'(D)$. Combining this with the assumption $\lambda'(D) \leq \xi'(D)$, we have $\lambda'(D) = \xi'(D)$. Therefore, D is λ' -optimal. The proof is complete. \Box

A simple, but very useful sufficient condition for a digraph to be λ' -optimal is given as follows.

Corollary 3.1. Let *D* be a strongly connected digraph with $\delta^+(D) \ge 3$ or $\delta^-(D) \ge 3$ and let $S = \partial^+(X)$ be a minimum restricted arc-cut of *D*. If there exists an arc x'x'' in D[X] such that $|N^+(x) \cap \overline{X}| \ge 2$ for any $x \in X \setminus \{x', x''\}$ or there exists an arc y'y'' in $D[\overline{X}]$ such that $|N^-(y) \cap \overline{X}| \ge 2$ for any $y \in \overline{X} \setminus \{y', y''\}$, then *D* is λ' -optimal.

Proof. By reason of symmetry we only prove the case that there exists an arc x'x'' in D[X] such that for any $x \in X \setminus \{x', x''\}, |N^+(x) \cap \overline{X}| \ge 2$. The hypotheses imply that $\xi'(D) \le |\partial^+(\{x', x''\})| = |(\{x', x''\}, \overline{X} \setminus \{x', x''\})| + |(\{x', x''\}, \overline{X})| \le 2|X \setminus \{x', x''\}| + |(\{x', x''\}, \overline{X})| \le \sum_{x \in X \setminus \{x', x''\}} |N^+(x) \cap \overline{X}| + |(\{x', x''\}, \overline{X})| = |(X \setminus \{x', x''\}, \overline{X})| + |(\{x', x''\}, \overline{X})| = |(X, \overline{X})| = |S| = \lambda'(D)$. By Theorem 2.1, we have $\lambda'(D) \le \xi'(D)$. Therefore, $\lambda'(D) = \xi'(D)$, which implies that D is λ' -optimal. \Box

Theorem 3.2. Let *D* be a digraph with order $n \ge 4$. If $|N^+(u) \cap N^-(v)| \ge 3$ for all pairs of vertices u, v with $uv \notin A(D)$, then *D* is λ' -optimal.

Proof. Clearly, *D* is a strong digraph with $\delta(D) \ge 3$. By Theorem 2.1, *D* is λ' -connected and satisfies $\lambda'(D) \le \xi'(D)$. Suppose, on the contrary, that *D* is not λ' -optimal, that is, $\lambda'(D) < \xi'(D)$. Then, by Theorem 3.1, we can assume that there exists $X \subseteq V(D)$ such that $S = \partial^+(X)$ is a minimum restricted arc-cut. Let $X_i = \{x \in X: |N^+(x) \cap \overline{X}| = i\},$ $\overline{X}_i = \{y \in \overline{X}: |N^-(y) \cap X| = i\}, i = 0, 1, \text{ and let } X_2 = \{x \in X: |N^+(x) \cap \overline{X}| \ge 2\}, \overline{X}_2 = \{y \in \overline{X}: |N^-(y) \cap X| \ge 2\}.$ **Claim 1.** *Either* $X_0 = \emptyset$ or $\overline{X}_0 = \emptyset$.

Assume by way of contradiction that there exist $x \in X_0$ and $y \in \overline{X}_0$. Clearly, $xy \notin A(D)$ and so $|N^+(x) \cap N^-(y)| \ge$ 3. On the other hand, since $x \in X_0$ and $y \in \overline{X}_0$, we have $N^+(x) \subseteq X$ and $N^-(y) \subseteq \overline{X}$, which implies that $N^+(x) \cap$ $N^-(y) = \emptyset$, a contradiction. Claim 1 follows,

Without loss of generality, assume $X_0 = \emptyset$ and let D_1, D_2, \ldots, D_t be an acyclic ordering of the strong components of $D' = D[\overline{X}]$.

Claim 2. $|X| \ge 3$.

Suppose that D[X] contains no arcs. Then by the definition of restricted arc-cuts, we have $t \ge 2$. For any $y_1 \in V(D_1)$, $y_t \in V(D_t)$, we have $y_t y_1 \notin A(D)$ and so $|N^+(y_t) \cap N^-(y_1)| \ge 3$. On the other hand, since $y_1 \in V(D_1)$ and $y_t \in V(D_t)$, we have $N^-(y_1) \subseteq V(D_1) \cup X$ and $N^+(y_t) \subseteq V(D_t) \cup X$ and so $N^-(y_1) \cap N^+(y_t) \subseteq X$. Therefore, $|X| \ge 3$. Suppose that D[X] contains an arc x_1x_2 . Then $|X| \ge 2$. If |X| = 2, then $X = \{x_1, x_2\}$ and so $\lambda'(D) = |S| \ge \xi'(x_1x_2) \ge \xi'(D)$, contrary to the assumption. Therefore, $|X| \ge 3$ again. The proof of Claim 2 is complete.

Claim 3. D[X] contains at least one arc.

Assume by way of contradiction that D[X] contains no arc. Then, by the definition of restricted arc-cuts, we have $t \ge 2$. Suppose that D_1 is trivial and let $V(D_1) = \{y_1\}$. Since *D* is strong, there exists $x \in X$ such that $xy_1 \in A(D)$. Noting that $\partial^+(x) \cup \partial^-(y_1) \subseteq S$, we have that $\lambda'(D) = |S| \ge \delta$ $\xi'(xy_1) \ge \xi'(D)$, contrary to the assumption. Suppose that D_t is trivial and let $V(D_t) = \{y_t\}$. Since D is strong, there exists $x \in X$ such that $y_t x \in A(D)$. Let $S^* = \partial^+(\{y_t, x\})$. By Lemma 2.1, S^* is a restricted arc-cut of D. For any $x', x'' \in X$, by assumption, we have $|N^+(x') \cap N^-(x'')| \ge 3$, and so $|N^+(x')| \ge 3$. It follows that $|S^*| \le d^+(x) + |X| - 1 < 3$ $d^+(x) + 3(|X| - 1) \leq |S|$, which is contrary to the minimality of S. Therefore, both D_1 and D_t are not trivial. This implies that $S' = (V \setminus (V(D_1)), V(D_1)) = (X, V(D_1))$ is a restricted arc-cut of *D*. Noting that $S' \subseteq S$, it follows that S' = S from the minimality of S. Let $y_t \in V(D_t)$. Then for any $y \in V(D_1)$, we have $y_t y \notin A(D)$. By assumption, $|N^+(y_t) \cap N^-(y)| \ge 3$. Combining this with the fact that $N^+(y_t) \cap N^-(y) \subseteq X$, we have $|N^-(y) \cap X| \ge 3$ and so $|N^{-}(y) \cap (V \setminus (V(D_1))| \ge 3$. Since D_1 is non-trivial, there exists an arc $y_1y'_1$ in D_1 . By Corollary 3.1, D is λ' -optimal, a contradiction completing the proof of Claim 3.

If $X = X_2$, then, by Claim 3 and Corollary 3.1, *D* is λ' -optimal, a contradiction. So we have

Claim 4. $X_1 \neq \emptyset$.

Let $x_1 \in X_1$ and let $N^+(x_1) \cap \overline{X} = \{y_1\}$.

Claim 5. $\overline{X} \setminus \{y_1\} \subseteq \overline{X}_2$.

By the definition of x_1 , for any $y \in \overline{X} \setminus \{y_1\}$, $x_1 y \notin A(D)$. By assumption, $3 \leq |N^+(x_1) \cap N^-(y)| = |N^+(x_1) \cap N^-(y) \cap$ $X| + |N^+(x_1) \cap N^-(y) \cap \overline{X}| \leq |N^-(y) \cap X| + |N^+(x_1) \cap \overline{X}| =$ $|N^{-}(y) \cap X| + 1$, which implies that $|N^{-}(y) \cap X| \ge 2$.

Claim 6. $\overline{X}_0 = \emptyset$.

Since $x_1 \in N^-(y_1) \cap X$, we have $y_1 \notin \overline{X}_0$. By Claim 5, we have $y \in \overline{X}_2$ for any $y \in \overline{X} \setminus \{y_1\}$. Therefore, $\overline{X}_0 = \emptyset$. Similarly, we have that $|\overline{X}| \ge 3$, $D[\overline{X}]$ contains at least

one arc. and

Claim 7. $\overline{X}_1 \neq \emptyset$.

By Claims 5 and 7, we have

Claim 8. $\overline{X}_1 = \{y_1\}.$

Let $x \in X \setminus \{x_1\}$. Then $xy_1 \notin A(D)$. By assumption, $3 \leq |N^+(x) \cap N^-(y_1)| = |N^+(x) \cap N^-(y_1) \cap X| + |N^+(x) \cap X|$ $N^{-}(y_1) \cap \overline{X}| \leq |N^{-}(y_1) \cap X| + |N^{-}(y_1) \cap \overline{X}| = 1 + |N^{-}(y_1) \cap \overline{X}|$ \overline{X} , which implies that $|N^{-}(y_1) \cap \overline{X}| \ge 2$. Therefore, there exists $y \in \overline{X}$ such that $yy_1 \in A(D)$. By Corollary 3.1 and Claim 5, *D* is λ' -optimal, a contradiction. The proof of Theorem 3.2 is complete.

Corollary 3.2. (See [7].) Let G be a λ' -connected graph. If $|N(u) \cap N(v)| \ge 3$ for all pairs u, v of nonadjacent vertices, then G is λ' -optimal.

Proof. Let D = D(G) be the digraph obtained from G by replacing each edge of G by a pair of two mutually opposite oriented arcs. Then $|N_D^+(u) \cap N_D^-(v)| \ge 3$ for all pairs of vertices u, v with $uv \notin A(D)$. By Theorem 3.2, $\lambda'(D) = \xi'(D)$. Clearly, $\xi(G) = \xi'(D)$. It was pointed out in the proof of Corollary 2.2 of [11] that $\lambda'(G) = \lambda'(D)$. It follows that $\lambda'(G) = \xi(G)$. The proof is complete. \Box

References

- [1] C. Balbuena, M. Cera, A. Diánez, P. García-Vázquez, X. Marcote, Sufficient conditions for λ' -optimality of graphs with small conditional diameter, Inform. Process. Lett. 95 (2005) 429-434.
- [2] C. Balbuena, P. García-Vázquez, X. Marcote, Sufficient conditions for λ' -optimality in graphs with girth g, J. Graph Theory 52 (2006) 73– 86.
- [3] M.O. Ball, Complexity of network reliability computation, Networks 10 (1980) 153-165.
- [4] J. Bang-Jensen, G. Gutin, Digraphs: Theory, Algorithms and Applications, Springer, London, 2000.
- [5] D. Bauer, F. Boesch, C. Suffel, R. Tindell, Combinatorial optimization problem in analysis and design of probabilistic networks, Networks 15 (1985) 257-271.
- [6] A.H. Esfahanian, S.L. Hakimi, On computing a conditional edgeconnectivity of a graph, Inform. Process. Lett. 27 (1988) 195-199.
- A. Hellwig, L. Volkmann, Sufficient conditions for λ' -optimality in graphs of diameter 2, Discrete Math. 283 (2004) 113-120.
- [8] A. Hellwig, L. Volkmann, Maximally edge-connected and vertexconnected graphs and digraphs: A survey, Discrete Math. 308 (2008) 3265-3296
- [9] J.S. Provan, M.O. Ball, The complexity of counting cuts and of computing the probability that a graph is connected, SIAM J. Comput. 12 (1983) 777-788.
- [10] N. Ueffing, L. Volkmann, Restricted edge-connectivity and minimum edge-degree, Ars Combin. 66 (2003) 193-203.
- [11] L. Volkmann, Restricted arc-connectivity of digraphs, Inform. Process. Lett. 103 (2007) 234-239.
- [12] M. Wang, Q. Li, Conditional edge connectivity properties, reliability comparisons and transitivity of graphs, Discrete Math. 258 (2002) 205-214.
- [13] J.M. Xu, K.L. Xu, On restricted edge-connectivity of graphs, Discrete Math. 243 (2002) 291-298.